Remarks on the Numerical Solution of Certain Linear Complementarity Problems
نویسنده
چکیده
In a recent paper, J. K. Aitchison and N. K. Upton have proposed a mathematical model of the behaviour of a cloud formed immediately after the sudden release of a pollutant, together with an algorithm for determining numerical solutions of the resulting system of constrained nonlinear equations and complementarity relations. This algorithm requires, at each step, the solution of a special Linear Comple-mentarity Problem, which is solved by an iterative method. In this note it is argued that the robustness and reliability of the solution procedure can be improved by the use of standard linear programming techniques.
منابع مشابه
Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects
In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...
متن کاملAn interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function
In this paper, an interior-point algorithm for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملIterative Regularized Solution of Symmetric and Positive Semi-Definite Linear Complementarity Problems
In this report an iterative method from the theory of maximal monotone operators is transfered into the context of linear complementarity problems and numerical tests are performed on contact problems from the field of rigid multibody dynamics.
متن کاملNumerical validation of solutions of linear complementarity problems
This paper proposes a validation method for solutions of linear complementarity problems. The validation procedure consists of two sufficient conditions that can be tested on a digital computer. If the first condition is satisfied then a given multidimensional interval centered at an approximate solution of the problem is guaranteed to contain an exact solution. If the second condition is satis...
متن کامل